Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete.
نویسندگان
چکیده
We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.
منابع مشابه
CORROSION BEHAVIOR OF ZINC COATED STEEL REBAR IN HIGH-STRENGTH REINFORCED CONCRETE
A large number of reinforced concrete structures subjected to chloride ions. Two basicapproaches for preventing corrosion of reinforcing steel embedded in concrete are: Increasing theconsolidation of concrete and using different coating on rebars. In present research steel rebarsare coated in different ways: a) 40 µm of zinc electroplated on steel rebar b) Zinc powder withepoxy paste (zinc rich...
متن کاملStrength and Toughness of Reinforced Concrete with Coated Steel Fibers
The effect of zinc phosphate (ZP) and zinc calcium phosphate (ZCP) coatings on the reinforcing mechanisms of smooth steel fiber in cementitious matrix have been studied. The results of pull out tests illustrated that by coating smooth steel fiber the pull-out load may be increased up to 100%. The effect of zinc phosphate coating on interface bonding was more than zinc-calcium phosphate coating....
متن کاملA comparison study on corrosion behavior of zinc phosphate and potassium zinc phosphate anticorrosive pigments
In this article, the effect of potassium on structure and anticorrosion properties of zinc phosphate pigments has been investigated. The co-precipitation method was selected as synthesis method of potassium zinc phosphate pigment. Then the synthesized pigment was characterized by x-ray diffraction XRD, Fourier transform infrared FTIR and Raman spectroscopy. Morphology of the powders was investi...
متن کاملModified Zinc Phosphate Coatings: A Promising Approach to Enhance the Anti-Corrosion Properties of Reinforcing Steel
Reinforcing steel embedded in fresh concrete develops a protective passive layer on its surface. This layer, which is formed as result of high alkalinity of the concrete pore solution (pH~13), consists of γ-Fe2O3 adhering tightly to the steel. As long as that oxide film is present, the steel remains intact [1]. However, chloride ions attack and concrete carbonation can destroy the film and, in ...
متن کاملMild steel surface pretreatment using phosphoric acid-inhibitor solution
In this study, a new mild steel surface pretreatment solution is introduced based on phosphoric acid containing a benzimidazole derivative as inhibitor. In this way, three different benzimidazole derivatives namely benzimidazole BI, 2-methyl benzimidazole 2MBI and 2-aminobenzimidazole 2ABI were studied in the 1M H3PO4 using DC and AC electrochemical techniques. Results revealed the better corro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science and technology of advanced materials
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2008